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The interaction between a vibrating structure and an unsteady potential 
flow-field disturbance induced by the motion of the structure itself is investigated, 
and is shown to be a significant source of both nonlinear excitation and nonlinear 
dissipation. An approximate analysis, based on small nonlinear disturbance 
theory, is presented of the forces that influence the characteristic behaviour of 
self-excited harmonium reeds vibrating a t  finite amplitudes. It is demonstrated 
that the ideas brought forth by this example can be generalized to apply to other 
flow-induced vibrating systems, regardless of the excitation mechanism, provided 
that certain basic assumptions about the flow can be made. For the case of the 
harmonium reed, it is shown that, taken by itself, an account of the feedback 
forces arising from induced higher-order unsteady disturbances in the sur- 
rounding potential flow field is sufficient for predicting the net nonlinear dissipa- 
tive force that eventually causes the reed to reach and maintain a finite limiting 
amplitude. In  particular, it is demonstrated that the nonlinear energy drain from 
the motion of the reed is a consequence of the net effect of the higher-harmonic 
disturbances that are generated near the structure. 

A result of the analysis is the development of a functional dependence of the 
interactive forces on the system geometry and the flow velocity. One of the 
advantages of obtaining a functional expression is the ability to carry out 
parametric studies in the context of vibration and noise control. 

1. Introduction 
The success of an analysis of any problem in the area of noise and vibration 

control often depends on a precise determination of the source characteristics, 
including an identification of the inducting mechanism. Once the exciting 
mechanism is known, the investigator is better equipped to deal with the vibra- 
tion problem. If there is acoustic radiation associated with a flow-induced 
vibrator, for example, it may even be possible to gain insight into the inherent 
characteristics of the radiating pressure field, based on the knowledge of the 
associated flow field a t  the source. As a consequence, such a source identification 
is a significant part of the effort in noise-control research. 
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FIGURE 1. Schematic diagram of the harmonium reed and shallot plate. 

The present work concerns the nonlinear fluid dynamics of a flow-induced 
structural-vibration problem. Specifically, a study of the nonlinear fluid-elastic 
phenomena associated with the harmonium reed is presented, along with a dis- 
cussion of the implications of the results. Although this is a relatively simple 
device, the ideas and results that  are brought forth are of fundamental import- 
ance, and can be generalized to include other systems which may be more 
complex. 

In  a paper published by St Hilaire, TVilson & Beavers ( 197 I, hereafter referred 
to as SWB), an analysis was presented that described qualitatively the 
mechanism responsible for inducing the self-excited motion of a vibrating metal 
reed (shown schematically in figure 1) in the presence of fluid flow. It was shown 
that the pressure forces developed in the unsteady potential flow past the reed 
excite the reed motion. A linearized form of the equations that represent an 
assumed unsteady potential flow about the oscillating structure was analysed, 
and the results predicted certain observed phenomena, such as the exponential 
amplitude growth undergone by the reed in the initial stage of excitation. The 
analysis also provided an accurate prediction of the actual magnitude and trend 
of the linear fluid-elastic forces, as functions of the volume flow past the reed 
assembly. 

Although the SWB analysis permits the successful development just outlined, 
its application is restricted to  amplitudes of the motion that are relatively small. 
An effective means of analytically predicting the magnitude of the system motion 
beyond the limited range of amplitudes allowed by linear analysis is not only of 
academic interest, but also of broad technological interest, especially in certain 
applications concerning the prevention or control of vibration and noise. 

A linear analysis of the fluid-elastic interaction yields useful information about 
the initial stage of the oscillator motion; to be able to estimate analytically the 
limit of excitation, however, requires a knowledge of what the significant dissipa- 
tive and excitative nonlinear forces that act on the excited structure are. The 
principal focus of this paper is on those features that become progressively more 
important as amplitudes of vibration larger than those allowed by linear analysis 
are generated. Although there are several possible sources of nonlinear energy 
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dissipation that could be considered in the analysis of the nonlinear interactive 
forces, only one source is examined in the following sections. This source is a 
consequence of the unsteady finite amplitude disturbances that are generated 
within a non-dissipative potential flow field by the structure’s own motion. 
Although the interaction of the various components of the flow-field disturbance 
within the fluid is intricate, the nonlinear effects that arise will be accounted for 
as simply as possible. The desired objective of demonstrating the significance of 
this source of energy dissipation for flow-structure interaction problems in 
general is achieved by studying the case of a self-excited harmonium reed. It is 
shown that it is sufficient, a t  least for the case of the harmonium reed, to consider 
only those effects arising from interactions of the type just described in order to 
be able to predict the degree of reed excitation in terms of the nonlinear forces 
acting on the reed. Comparisons with experiment for two reed configurations are 
offered to substantiate the analysis 

2. Background 
2.1. Introduction 

Therc are a number of mechanical systems that display the characteristics of 
self-sustained oscillation. In  some of these, the oscillations are produced by some 
feedback mechanism, the energy required to sustain the motion being derived 
from a time-independent energy source. An example of such a device is the metal 
reed, which obtains its energy of oscillation from the surrounding flow field. 

The harmonium reed is one of a variety of sound sources that have been 
developed empirically through the years to satisfy the criterion that they be 
efficient producers of sound. Although the harmonium reed is simple in construc- 
tion, the precise analysis of the forces that influence its motion requires a con- 
sideration of a large number of factors, both linear and nonlinear. The fluid- 
elastic forces that have been found both to excite the reed motion (SWB) and, 
as shown in 3 3, to cause the reed to reach and maintain a finite limit,ing amplitude 
are very complicated; an attempt, therefore, a t  their precise analysis would not 
be of practical value. In  order to render the problem amenable to approximate 
analysis, it is necessary to make certain basic assumptions about the geometrical 
configuration and the surrounding flow region. 

A linear analysis of the interaction between the harmonium reed and the flow 
field surrounding it has already been made. As a consequence, the assumptions 
that are common to both the previous and present analyses of the problem are 
only briefly described, since a detailed description is available in SWB. 

2.2 ,  Reed -assembly geometry 

The harmonium reed is essentially a small flat beam riveted a t  one end to a 
support plate hereafter called the ‘shallot ’. A schematic diagram of the assembly 
is shown in figure 1. The cantilevered portion of the reed is shown as having its 
equilibrium position a uniform distance a above the upstream side of the shallot, 
thus forming two gaps of area al. The rectangular opening in the shallot immedi- 
ately beneath the reed, being slightly larger than the reed itself, allows the reed 
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Reed fo (Hz) t (cm) h (cm) a (em) 1 (cm) 
A 165 0.022 0.577 0.035 3.80 
B 225 0.030 0.460 0.020 4.20 

TABLE 1. Reed characteristics 

to vibrate freely as the vibrational amplitude becomes larger. Typically, for such 
a reed configuration, it is reasonable to assume that a -g h < 1. This allows the 
flow near the reed to be considered nearly two-dimensional. This assumption, 
furthermore, provides a scheme for simplifying the expressions that are obtained 
in the analysis. 

In  order to study the growth of the reed vibration in the laboratory, two reeds 
were attached to appropriate shallots. The dimensions of the two reed assemblies 
are given in table 1, which also includes the natural frequency fo for each reed. 
The study of the reed motion included the case where the reeds were modified by 
the addition of small masses to their tips. The masses were used to reduce the 
vibration frequency of the reeds without changing their geometry. 

2.3. Reed dynamics 

When any structure with an inclination towards flow-induced oscillation has its 
position of static equilibrium (which includes any displacement resulting from an 
imposed constant drag force) altered slightly under favourable conditions of 
flow, even by the most infinitesimal disturbance, such as a shedding vortex, it 
begins to vibrate with a growing amplitude. It has been observed, for example, 
that the self-excited oscillation of the harmonium reed occurs when the pressure 
difference between the two reservoirs on either side of the reed assembly is large 
enough that the periodic flow disturbances introduced by the reed into the sur- 
rounding potential flow field feed enough energy back to the reed to offset the 
dissipation effect of the inherent linear damping of the system. As a result, an 
energy feedback loop is set up between the flow field and the structure, so that 
the amplitudes of both the structure’s motion and the flow disturbance become 
increasingly large. A theoretical calculation based on linear analysis gives rise 
to an unstable situation; that is, it allows the regenerative cycle just described to 
proceed without limit. I n  reality, however, small disturbances only grow until 
either a nonlinear limiting mechanism appears or there is structural failure. For 
the case of the harmonium reed, it has been observed that the initial exponential 
growth rate does slow down because of an undefined nonlinear dissipating 
mechanism, until the motion eventually levels off a t  and maintains a certain 
limiting amplitude. 

2.4. Nonlinear forces 

Most authors working in nonlinear mechanics seem to agree that the identifica- 
tion of the sources of nonlinear forces is often as difficult as the prediction of 
their strength. For the case of a flow-induced structural-vibration problem, such 
as the self-excited harmonium reed, it can be safely assumed that only those 
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nonlinear forces that are in phase with the velocity of the structure significantly 
influence its fundamental motion. This is because the inertial and stiffness 
elements of the structure are much less sensitive than the damping term to 
fluid-elastic interactions, and inclusion of these effects in the analysis would only 
yield a slight refinement of the main results that are sought in the present work. 
Currie, Hartlen & Martin (1972) have considered the effects of the nonlinear 
spring element in their phenomenological study of the vortex-induced oscillations 
of a cylinder in free-stream flow. Although their work was partly empirical, their 
results provided a more complete understanding of the overall behaviour of the 
oscillating cylinder. For the present problem, an analytical approach to the 
development of the nonlinear spring and mass elements of the reed arising from 
flow-structure interactions is possible simply by retaining the imaginary part 
of the nonlinear damping force ($3 ) )  and decomposing it into its inertial and 
stiffness components. Such a development is not included here, however. 

There are several sources from which nonlinear contributions to the system 
damping may arise. In  their study of oscillating flat cantilevered beams, Baker, 
Woolam & Young (1967) found that the aerodynamic drag associated with large 
amplitude motion gives rise to a nonlinear force that is proportional to the 
amplitude squared and in phase with beam velocity; observations indicate, how- 
ever, that a stronger dependence of the nonlinear force on amplitude prevails for 
the present configuration. Another source of nonlinear damping concerns the 
internal friction of the structure. Many investigators (e.g. Lazan & Goodman 
196 1 ; Crandall, Khabbaz & Manning 1964) have proposed, using empirical 
formulations, that the associated nonlinear force is proportional to the amplitude 
raised to the seventh power. Because such a force is of very high order, its effects 
are not considered here. The analysis that follows shows that the nonlinear fluid- 
elastic forces that are generated from flow-field disturbances give an adequate 
description of the behaviour of the harmonium reed at  finite amplitudes of 
vibration without account being taken of other sources of nonlinear dissipation. 

2.5. Plow model 

The perturbations that are exerted by the reed on the fluid can be taken into 
account by assuming that the flow is a superposition of steady potential flow and 
higher-order, unsteady effects. The reed assembly, as shown in figure 1, acts both 
as a dipole and a monopole source when the reed becomes excited. Once the reed 
was set in motion in the laboratory, it  was observed that its vibrations were 
simple harmonic, and yet it was able to radiate a multi-harmonic acoustic signal. 
This situation naturally suggests the presence of induced higher-order pressure 
fluctuations in the surrounding flow field, some of which are capable of radiating 
acoustically. In consequence, disturbance terms up to at  least the third order 
(amplitude of the motion cubed) are included in the analytical model. The 
objective of this work is to show that the nonlinear effects associated with the 
higher-harmonic fluctuations in the fluid very near the reed become significant 
sources of nonlinear excitation and dissipation at  finite amplitudes of vibration. 

There are two relationships necessary to execute the solution of fluid-elastic 
problems of the type under discussion. The first relationship is a, constraint 
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equation which allows the flow disturbance to be related to the position of the 
vibrating structure. The second is an expression for the pressure field that allows 
computation of the components of the fluid-elastic force which most significantly 
affect the structure’s behaviour. 

An unsteady potential flow analysis yields the difference between the upstream 
and downstream reservoir pressures in terms of the flow variables as 

!% = &2-&ci In (4 - +- ;;2[( In- f)2-4] 
p 2n212a2 n21a 

where Q is the total volume flow through the two gaps, each of constant length 1 
and of time-varying width a. Equation (1) represents the constraint relating 
any changes in Q to corresponding changes in a for the oscillating reed. 

The objective of the analysis is to calculate the component of the fluid-elastic 
force which is in phase with the reed velocity. This force component is derived 
from the pressure difference Ap across the reed, 

The variable x indicates the position across the width of the reed surface on the 
upstream side. The points x = x,,, where x,, = i ( h  + a ) ,  are the positions of the 
two line sinks formed by the two gaps between the reed and the shallot relative 
to the reed centre-line (SWB). It is noted that the above two equations contain 
an a 2  term, which, being of higher order, was neglected in SWB. A detailed 
account of (1) and ( 2 )  is available in a report by St Hilaire (1971)) as well as 
in SWB. 

3. Analysis of fluid-elastic forces 
3.1. Plow as a fun.ction of structure displacement 

As was stated in the previous section, it is assumed a t  the outset that the only 
important source of nonlinear rates of change of energy experienced by the reed is 
the existence of the higher-order flow fluctuations that are introduced by the reed 
motion itself into the surrounding steady potential flow field. It is shown in this 
section that, when the amplitudes of these fluctuations become large, the net 
effect of the associated higher-order forces that act on the structure is dissipative, 
and that, as the amplitudes continue to grow, these forces eventually become 
significant enough to curb the regenerative process predicted by linear analysis. 
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Since the present analysis includes higher-order unsteady effects, it follows 
that writing out a proper expression that gives the induced unsteady flow per- 
turbation as a function of the reed displacement is more complicated than in the 
linear case. Certain justifiable assumptions are made, however, to keep the 
expression as simple as possible without sacrificing the important details. Rather 
than attempting to obtain such an expression directly from (1)) the desired 
expression is assumed to be of a form that is based on the following arguments. 

In  finite amplitude wave or disturbance analyses, the phenomena associated 
with the interactions of the primary disturbances can no longer be neglected. 
These interactions give rise to higher-frequency, higher-order fluctuations in the 
flow field near the structure. A consequence of these higher-order fluctuations is 
that  the oscillating structure becomes subjected to the corresponding higher- 
harmonic forces that are generated. Therefore, it would appear that the osciIlator 
would tend to vibrate at several harmonics whose frequencies are integral 
multiples of the frequency of its fundamental motion. However, because of the 
high selectivity of the type of oscillators under discussion, such as the harmonium 
reed, it is appropriate to assume, with confidence, that the phenomenon of 
resonance prevails.? This allows the suppression of higher-harmonic terms in the 
expression for the oscillator motion. Such an assumption, which is borne out 
experimentally, has a good deal of practical value, in so far as it results in a 
simpler and more straightforward analysis. It is crucial, however, to distinguish 
between the relative significance of higher-harmonic oscillator activity and the 
higher-harmonic motion of the flow disturbance. For, although the former can 
be neglected with some justification, the latter must be taken into account in 
order to succeed in determining the nonlinear fluid-elastic forces that are associ- 
ated with the motion of the oscillator. Not only is the retention of these higher- 
harmonic fluctuations useful from a fluid-dynamic standpoint, but a reasonably 
good qualitat'ive knowledge of these fluctuations is necessary in order to be 
able to estimate analytically, a t  least in part, the multi-harmonic content of the 
acoustic signal radiating from the device. 

It is also appropriate to assume that any higher-mode activity of the reed or 
similar structure can be safely neglected. If the higher modes, with frequencies 
that are far from being integral multiples of the fundamental, persisted at 
appreciable amplitudes, the motion would be complex, thereby indicating that 
the reed gives off a discordant acoustic signal, contrary to what is observed to 
emanate from a musical instrument. I n  support of this inference, the higher-order 
vibrational modes of the beam were not observed when the dynamic responses 
from the strain gauges were monitored. They are not present in any significant 
magnitude for two reasons. First, because the flow is nearly uniform over the 
length of the reed, there is no significant component of the forces acting on the 
reed in these modes, and second, because higher modes have higher modal 

t Once a feedback loop is established between a self-excited structure and the flowing 
fluid, one might think of the structure as setting up its own forcing function a t  the 
structure's own frequency. Furthermore, because of the expected high selectivity (weak 
damping) of self-excited systems, one can safely say that this is the only frequency that is 
generated to  any significant degree. 
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impedances, they are more strenuous to produce. Consequently, the reed motion 
is nearly periodic, and almost entirely due to the fundamental. 

A convenient method of explicitly extracting information about the volume 
flow as a function of the size of the gap between the reed and its supporting 
structure is to assume that these variables have the following form: 

a = ao+a', Q = &,+&I ,  (3) 

where a, corresponds to the undisturbed position of the reed away from the 
shallot for a given Qo prior to the onset of self-excited vibratory motion and Qo is 
the steady flow (which was regulated by a calibrated orifice) past the reed 
assembly. The quantities a' and Q' represent the respective time-varying devia- 
tions from these constant values as the reed is set in motion. 

On the basis of the arguments just presented, the expression for a' may be 
written as 

(4) a' = a e-iwt  
1 '  

One of the possible ways of accounting for the higher-order effects in the flow is 
by breaking down into their harmonic components the nonlinear terms that 
would appear in the expression for Q'. This approach seems to be the most natural 
for enabling a description of the sources of nonlinear dissipation and excitation. 
Therefore, the following Fourier series expansion for Q' is assumed: 

Q' = Q,+ C Q ,  ecinwt, 
n 

where Q, represents the non-oscillatory component of the flow perturbation, and 
the coefficients of the series are power-series expansions in a,. The justification 
for this eclectic choice of the form of Q' lies in the successful methodical analysis 
to which it leads, while a t  the same time preserving a grasp of the physics of the 
problem. 

It is noted that, since the motion of a weakly damped oscillator is quasi-steady, 
all amplitudes appearing in (4) and (5) can be regarded as constants with respect 
to time, thereby greatly simplifying the analysis. On the other hand, because 
the problem is nonlinear, the evaluation of the assumed time-independent 
coefficients Q, of ( 5 )  is slightly complicated by the interdependence of the various 
coefficients within the Q,. 

When writing out (5) in terms of a,, it is useful to break up the coefficients of 
each harmonic component in such a way as to be able to distinguish between two 
types of mechanisms that contribute to the fluid-elastic interaction. The first 
mechanism has to do with the self-interaction of the first-harmonic component 
of the unsteady flow perturbation, as well as its interaction with the simple 
harmonic motion of the structure. This interaction gives rise to higher-order, 
higher-harmonic fluctuating components (including a non-oscillatory com- 
ponent) within the flow, as well as creating higher-order contributions to the 
first-harmonic component of the flow disturbance. The second mechanism 
accounts for the subsequent mutual interaction of the various components of the 
flow disturbance (again including the non-oscillatory component) within the 
flow near the structure. This mutual interaction of the various components of 
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the disturbance, as well as the self-interaction of the higher-harmonic compo- 
nents, provides still more higher-order contributions to all the components of 
the flow disturbance. 

For simplicity, the two mechanisms which contribute higher-order adjust- 
ments to the fundamental (first harmonic) disturbance will hereafter be referred 
to  as mechan.ism I (self-interaction effects) and mechanism I1 (mutual-interaction 
effects), respectively. The purpose of accounting for each of these mechanisms 
separately is to see whether the generation of higher-harmonic disturbances in 
the fluid is a significant enough drain of energy away from the vibrating system 
to  counteract any nonlinear excitation that may arise from mechanism I. Such 
knowledge would certainly be helpful in explaining how the reed reaches a 
limiting amplitude. 

By taking into account the distinguishing features of these two types of 
interaction, (5) can be written in terms of the displacement amplitude a, as 

k 
Q’ = valeciwt + C 3 [,uk + (alc, 2n +& 2n)  ecZniwt] aF 

k n=l 

where the coefficients ak,p and Pk,i  are associated with mechanisms I and 11, 
while the coefficients Y and ,uk are related to the linear and non-oscillatory parts 
of the flow disturbance, respectively. 

As written, (6) is independent of the particular geometry, and therefore should 
apply, in theory, to any flow-induced structural vibrations where higher- 
harmonic activity and higher-frequency mode shapes of the structure’s motion 
have been neglected. The subscripted coefficients appearing in (6) can all be 
written as functions of the configuration geometry, the flow velocity and v ;  
therefore, if a potential flow field can be formulated and an analytical or experi- 
mental value of v specified for a given situation, (6) should be applicable, regard- 
less of the exciting mechanism. As such, (6) can be used t o  determine whether or 
not the nonlinear interaction between a potential flow field and a vibrating body 
is an important source of energy dissipation. If this is so, this approach would 
allow a t  least a partial analytical prediction (in a qualitative sense) of the large 
amplitude response of a given system; that is, this approach would reveal 
explicitly the functional relations which govern the response of the structure. 
I n  addition, from an acoustic point of view, (6) is also useful as an important first 
step towards any attempt a t  estimating the resulting sound radiation in terms 
of the characteristics of the source for flow-induced structures that radiate 
acoustically. 

It might be interjected at this point that, despite the elaborate form of the 
equation, only a few terms are needed to arrive a t  a reasonable analytic descrip- 
tion of a flow-structure system, as demonstrated in the following sections for the 
reed. Furthermore, should any higher-harmonic activity of the structure be 
included in the analysis, there would be no explicit change in the form of (6). 
The resulting change would appear implicitly, since t’he coefficients ,uk and p,<, 

2 5  F L M  67 
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would become functions of the oscillator impedance. To include higher modal 
activity of the structure, on the other hand, would require rewriting (6) to include 
new frequency terms. 

3.2. Evaluation of the coeflcients 

The coefficients of (6) can be evaluated upon substituting (3) into ( l ) ,  expanding 
in a power series and, with the aid of (4) and ( 5 ) ,  breaking up the resulting 
expression into its various harmonic components. I n  order to  achieve the desired 
objective of analytically describing the nonlinear flow-structure interaction of 
the harmonium reed, i t  is sufficient to retain only those terms up to third-order 
deviations (a:) in the expanded form of (1). Correspondingly, the non- 
oscillatory and first two harmonic components of (6) are all that  are required for 
the present analysis. As a result, the equations that are relevant t o  the problem 
of the oscillating harmonium reed are 

(7) 

( 8 )  

a’ = a e - i w t  
1 

and, from ( B ) ,  

where Qs = pi% 

Q’ = Q, + Q1 e - i w t  + Q z  e-ziwt, 

Qi = vai + (ai, 1 +Pi, 1) 4 9  Q z  = (a1 ,2  +Pi, 2)  4. 
When (7) and (8) are substituted into ( I )  with the aid of (3) and only the linear 

terms in the perturbation quantities are retained, we find that 

I - ( i / q )  ( 2  +In [Z2/h(2ha,)4j} 9 (9) 
~ va, 

Qo 

1 - (h/nuoq2) [ 2  +In (13/2h2)] - (i/nq) In (h/uo) 
l l = - =  

where q is the dimensionless volume flow represented by Qo/nwla,2. It can be seen 
from (9) that, if the frequency of the gap oscillation is small, the fractional change 
in the volume flow is the same as the fractional change in gap size. On the other 
hand, a t  higher frequencies, the flow perturbation is reduced and lags behind the 
gap perturbation on account of the inertia of the fluid. 

By again combining ( 7 )  and (8) with the constraint equation, and this time 
retaining the terms proportional to  a:, we arrive a t  

- al, la$ +[ 1 - Re (?)I - iij + +I + $i;2 
- CtlJ = - - 

Qo 1 - ( i / q )  ( 2  +In [Z2/h(~hao)9]} 

(i/nq) {# + 4 In (h/ao) - Bi;* [ 1 +In (h/n,)] - &r[#C- Re ( i ; ) ] }  

1 - ( i / q )  ( 2  +In [Z2/h(2hao)+]} 3 (10) - 

where an asterisk indicates a complex conjugate. The evaluation of p1 and al, 
proceeds in a similar manner by retaining terms that are proportional to a;. We 
find that 

,El =plu,2/Qo = -$+Re(v”)-$Jv”12 (11)  

a1 - $ + ( i / fnq)  [1 +In @/ao)] and = - - - 
1 - (2 i /q )  ( 2  +In [Z2/h(2hao)~]} Qo 
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The contribution of the ( E 2  term which appears in (1) is not included in (1 1) and (12) 
because, for values of the volume flow that excite the reed motion, the a2 contri- 
bution was found to be approximately three orders of magnitude smaller than 
any of the other contributing terms. 

Having completed the evaluation of the coefficients of the terms that are 
associated with mechanism I, we can now calculate the remaining coefficients 
appearing in (8). From the constraint equation, the expression for /I,, , is 

= PI - 1 4  - - a",, 2 { 1  + (i/2Trp) [In W O )  - 7711 
Qo 1 - ( i /q )  (2  +In [l2/h(2ha0)*]) 

;El, 217* +,&[2 - 17- (i/nq) In (h/ao)] 

1 - (i/q) (2 +In [Z2/h(L(shao)*]) 
* (13) - 

The dependence of p,, on p, and a,, is indicative of the coupling that exists 
between the various components of the disturbance. By inspection, the constraint 
equation shows that j31,z is equal to zero. I n  fact, inspection of ( 6 )  shows that 
p,,, 2n is zero for all n when k equals 1. 

When the frequency of oscillation is lowered, it is seen from (lo)-( 13) that the 
coefficients become progressively smaller. This observation supports the expected 
equality between the fractional change in volume flow and the fractional change 
in gap size for low-frequency motion. 

3.3. The $uid-elastic forces 

The pressure forces that influence the dynamical behaviour of the reed through 
the damping term can now be evaluated. The component of the unsteady force 
which is in phase with the reed velocity is obtained by first subst,ituting (3) into 
(2 ) ,  and by using (8) tjo replace Q' in terms of a,. Upon collecting terms that are 
linear and cubic in a,, of lowest order in ao/h and in phase with u, the in-phase 
pressure component Sp can immediately be written down. In  this form, Sp is 
a function of the position on the reed surface. Finally, the average force per unit 
area &$is obtained by integrating Sp over the reed surface: 

Equation (14) is written such that a positive acts towards the downstream 
reservoir. The resulting approximate expression for the average dimensionless 
force, which both excites the reed motion and causes it eventually to reach a finite 
limiting amplitude, is 

It is convenient, for the sake of discussion, to rewrite (15) as 
- - 

-& - - -@1 + - 4 9 2  

pQo a/2lao PQO 6/2lao pQo a/21ao' 



388 A .  0. St Hilaire and P. G. Vaidya 

where the first and second terms represent the linear and nonlinear parts of the 
dimensionless pressure force, respectively. 

Inspection of 
pQoa/21uo - &l = 2 7r [3+ln (&)I Re (17) 117) 

with the aid of (9) shows that the linear aerodynamic force adds to the damping 
for low q,  while adding to the energy of the reed motion for large q. A detailed 
discussion of (17 )  is presented in SWB. 

I n  order to discuss effectively the remaining term in (16)) a new dimensionless 
quantity is introduced that eliminates the amplitude of vibration from the right- 
hand side of the expression for the nonlinear dimensionless force. For simplicity, 
this quantity is labelled as F, and is written as 

Equation (18) represents a measure, for a given flow, of the dimensionless non- 
linear pressure force that acts on the reed. The regenerative growth of the 
oscillator motion proceeds to a finite limiting amplitude when P > 0, whereas 
the nonlinear pressure force further excites the oscillator motion when F < 0. 

The two dimensionless pressure-force components appearing in (18) are associ- 
ated with the unsteady volume flow and convective acceleration terms of ( 2 ) ,  
respectively. Nonlinear effects associated with the volume-flow displacement of 
the reed motion were found to be insignificant for values of the volume flow that 
excite the reed motion. 

A plot of the nonlinear-force components of (18) and their resultant as functions 
of the dimensionless volume flow for a typical reed configuration is shown in 
figure 2 (a) .  (Since the resultant analytical curve to the left of its intersection with 
the q axis has no physical meaning and since it oscillates about the q axis in this 
region, this part of the curve has been omitted in figures 2 (a) and (b ) . )  It can be 
seen that the unsteady nonlinear force does indeed act as a damping force when 
the reed is self-excited. Furthermore, figure 2 (a )  shows that for small values of q 
the effects of unsteady volume flow are predominant, whereas the effect associ- 
ated with convective momentum transport increases in magnitude as q becomes 
large, until it becomes the more important source of nonlinear fluid-elastic 
damping. In  view of the nonlinear analysis, such a development is not surprising. 

Attention is now turned towards determining in what way mechanisms I and I1 
contribute to the reed motion. Upon rearranging the terms of (18) into two groups 
representing the effects of mechanisms I and 11, respectively, the expression 
for F can be rewritten as 

Re(~,,,)+-1m(2E1,,) a0 4 
7rh 

+ ( - 5 [ 3 +In (&)I Re (p",, 1) +% I m  [2P1, + F*d1, + 2fiBl1). (19) 
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FIGURE 2 .  Dimensionless nonlinear pressure force as a function of dimensionless volume 
flow for reed B. -, resultant nonlinear pressure force. (a)  -.-, unsteady flow com- 
ponent; --- , convective acceleration component. (b )  -.-, contribution from 
mechanism 11; ---, contribution from mechanism I. 

A plot of each of these components, along with their resultant, as functions of 
the dimensioness volume flow is shown in figure 2 ( b )  for the same reed configura- 
tion as in figure 2 (a).  Figure 2 ( b )  demonstrates that the nonlinear damping force 
is a consequence of the interharmonic coupling previously described and repre- 
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sented by mechanism 11. On the other hand, it is quite clear that, by itself, 
mechanism I would further excite the reed motion beyond the exponential rate 
predicted by linear analysis. 

3.4. Comments 

The approach that has been employed for showing that the net nonlinear force 
acting on the reed (as a consequence of higher-order disturbances in the sur- 
rounding fluid) is dissipative has allowed the revelation of some of the finer but 
important details of the problem. In addition to having shown that the unsteady 
and convective components of the flow each contribute significantly to the net 
nonlinear dissipative force, it has been demonstrated that, for the case of the 
harmonium reed, the second-harmonic and steady-state terms of the flow dis- 
turbance (which are a consequence of the self-interaction of the fundamental 
component) are clearly necessary to create the situation where a sufficient 
amount of energy is drained from the oscillator motion at finite amplitudes. 
Within the present theoretical framework, this drain of energy prevents the reed 
from hypothetically reaching catastrophic amplitudes of vibration, Furthermore, 
it has been shown that, in order for the energy drain just described to overcome 
effectively the regenerative amplitude growth predicted by linear analysis, it 
must first overcome a source of nonlinear excitation that is due entirely to the 
self-interaction of the fundamental component of the flow disturbance, as well 
as that due to its interaction with the oscillator motion itself. 

It is important to note that the effects of mechanisms I and I1 taken separately 
are considerably larger in magnitude than their combined value. This observa- 
tion is an indication of the sensitivity of the analysis to the assumptions that are 
made in modelling the problem; that is, the successful outcome of the theory is 
contingent on the degree of care exercised in formulating the assumptions that 
are associated with the analysis. Therefore, in order to be successful, it behoves 
the future investigator to exercise great care in the assumptions he uses with 
respect both to constructing the flow potential and to neglecting terms as the 
analysis proceeds. 

4. Comparison of the analysis with the experiment 
A comparison between the analysis and the experimental data can be achieved 

most conveniently by computing an effective value of the nonlinear pressure 
force F2 from the experimental data and comparing this with the value given 
by equation (18). The experimental value of F2 is obtained by computing the 
nonlinear damping force which is required to offset the observed rate of change 
of energy produced by the linear regenerative pressure force vl. This is accom- 
plished by noting that, when the reed reaches its limiting amplitude, the net 
work done by all of the forces that are in phase with the reed velocity equals zero. 
Therefore, the equation giving the nonlinear pressure force is 
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where the integral is taken over the surface of the reed. The second term in (20) 
represents the fractional rate of change of reed energy E due to material dissipa- 
tion, which is assumed to be given by the damping a t  zero flow. 

The expression that is used for computing the experimental value of G, was 
derived in SWB by noting that the work done by the linear pressure forces is 
equal to the observed energy change minus the energy change due to material 
dissipation. By accounting for the fact that the mode shape is nearly the same 
for the reeds loaded with a mass a t  the t’ip as for the uniform reed, the approxi- 
mate expression giving&, was found to be 

which can be used for both loaded and unloaded reeds. I n  (21), ps is the densitjy 
of the reed, t is tjhe reed thickness, w, is the frequency of vibration of the unloaded 
reed, and w is the frequency of vibration of the reed either loaded or unloaded by 
a mass a t  its tip. The exciting factor e is a measure of the observed fractional 
energy change undergone by the vibrating reed, and is written in terms of the 
energy change as 

while +, is the damping factor measured a t  zero flow. 
If, as indicated by analysis, & is proport’ional to  a;ci, then &/a;u can be 

takenout oftheintegralin (20). It, followsthat acombinationof (16)’ (20) and (21) 
yields the following relationship for experimental values of F :  

6 = &/2wE, 

where 1 is the length of the reed. By assuming that the reed material is linearly 
elastic, and introducing an approximate expression based on Rayleigh’s principle 
for the fundamental mode shape of the uniform cantilevered beam, (22) may be 
written in approximate form in terms of the measured surface strain S,  as 

The numerical coefficient appearing in the above expression reflects the situation 
where the actual values of the strain are monitored and recorded near the root 
of the reed corresponding to the point of maximum strain. The quantities e and 
S,, were obtained by inspection of a series of oscillograms that were taken to 
record the strain-gauge output of actual self-excited reeds for several values of 
the volume flow. 

The experimental and analytical values of G2 for two reeds are shown in 
figures 3 ( a )  and (b) .  It can be seen that plotting the dimensionless nonlinear 
pressure force P against the dimensionless volume flow q successfully brings tjhe 
experimental data for different frequencies (corresponding to various loads a t  
the tips of the reeds) close to a common curve for each reed. These figures show 
that the order of magnitude of the experimentally determined nonlinear pressure 
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FIGURE 3. Dimensionless nonlinear pressure force as a function of dimensionless volume 
flow. -, equation (18).  (a) ReedA.f(Hz):  0, 165; A, 137; 0, 120. ( b )  ReedB.f(Hz): 
0, 225; a, 190; 0, 161. 

force is in good agreement with the results predicted by the analysis. Although 
there is considerable scatter in the experimental data, it is noted that, at  least 
in figure 3 (b ) ,  the qualitative features of the shapes of the experimental trend 
and the analytical curve are similar. 

A close inspection of the oscillograms revealed that the reeds did not vibrate 
symmetrically about their initial position of zero displacement (this position 
being determined just prior to the onset of excitation). The asymmetric behaviour 
of the reeds can be explained in part by the drifting of the limit-cycle centre as 
the amplitude of vibration grows. Figure 4 depicts schematically a typical 
oscillogram of the dynamic response envelope of a reed. Superimposed on this 
figure is a sketch of what the limit-cycle centre drift might look like as a function 
of time. This drift occurs because, in reality, the damping function is asymmetric. 
This asymmetric behaviour of the reed is a result of the higher-order non- 
oscillatory effects that contribute to the damping function. Two possible main 
sources of these non-oscillatory inputs are (i) nonlinear aerodynamic drag and 
(ii) the self-interaction of the first-harmonic component of the flow disturbance. 

1 I I I 

(6) 
0 

- - 

- 
- - 

I I I 1 
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FIGURE 4. Schematic diagram of a typical oscillogram showing the growth of the vibration 
amplitude (solid lines) and the drift (slightly exaggerated) of the limit-cycle centre (broken 
line). The arrow at the left indicates the point in time of the application of constant 
volume flow Qo. 

These effects were not accounted for in the present analysis since interest was 
focused only on those contributions to the damping term that are in phase with 
the reed velocity. 

Ideally, the nonlinear non-oscillatory inputs just described simply relocate 
the centre of vibration about which the reed vibrates symmetrically. The sym- 
metry of vibration is retained because these nonlinear effects are constant during 
each cycle of the oscillation. Actually, however, because the position of the reed 
changes with respect to the location of the shallot plane during a cycle of oscilla- 
tion, thereby continuously changing the system geometry, it is expected that 
the actual nonlinear non-oscillatory aerodynamic drag force varies slightly in 
magnitude, according to the position of the reed relative to  the shallot plane. 
Consequently, this nonlinear non-oscillatory input causes the reed to vibrate 
asymmetrically about the drifting limit-cycle centre. Because of this irregularity, 
there was a built-in uncertainty in visually estimating e and S,, from the oscillo- 
grams. By coupling this with the fact that F is proportional to e/Sh, which tends 
to magnify the error inherent in e and S , ,  it is easy to see that the scatter 
appearing in figures 3 ( a )  and ( b )  is practically unavoidable. 

5. Discussion 5.1. Comments on assumptions 

Throughout the analysis of the present problem, the effects of viscosity were 
tacit>ly ignored. The neglect of frictional losses was justifiable, and was based on 
extensive flow-visualization studies (discussed by SWB; Beavers, St Hilaire & 
Wilson 1972), as well as on measured values of the Reynolds number corre- 
sponding to values of the volume flow for which the reed becomes excited. 
Values of the Reynolds number were found by experiment to be of the order of 
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103 (Beavers et al. 1973), where the Reynolds number is defined by Q/lv (Q/l  being 
the volume flow per unit length of the reed). This conveniently allowed the use of 
the unsteady Bernoulli equation for developing ( 1 )  and ( 2 ) ,  upon which the 
subsequent analysis of 3 3 depended. 

Considering the assumption of irrotationality and the other simplifying 
assumptions that were stated in the earlier sections of this paper, the comparison 
between analysis and experiment was surprisingly good. This fact provides 
incentive for investigating other seemingly complicated flow-structure inter- 
action problems where analysis of the finite amplitude response is of interest. 
Because of this simplicity, given that an analysis of a particular problem of 
interest is successful, it  is possible to generate a functional dependence of the 
nonlinear forces on the geometry and volume flow, thus allowing a means, via 
parametric studies, of investigating the possibility of discouraging or enhancing 
the response of a structure to an excitative force. In  other words, the ability to 
state a functional expression provides the option of an a pr ior i  design approach, 
as opposed to an empirical trial-and-error technique. This would especially be 
useful in vibration and, of course, noise control. 

5.2 .  Natural extensions of the theory 

In  the foregoing analysis, concern was focused on that part of the interactive 
forces that influences the structure's behaviour through the damping term. In  
reality, there are additional effects of the flow-field disturbances on the behaviour 
of the structure, but these are through the inertial and stiffness elements of the 
vibrator. For the case of the harmonium reed, it was seen fit to ignore these effects 
by retaining only that part of the resulting pressure force that was in phase with 
the reed velocity. If the ideas developed in this work are to be applied to other 
flow-structure systems, it may be necessary to retain these effects, as, for 
example, in the case of oscillating cylinders that are excited by vortex shedding 
(see, for example, Currie et al. 1973), to determine to what extent the flow- 
structure interaction of the type under discussion contributes to the observed 
soft-spring distortion of the amplitude-frequency response of some structures. 
(Other structures may experience hard-spring distortions.) This distortion is 
manifested by a shift in the location of resonance to the left (for the hard-spring 
case, the shift is to the right), thereby creating a situation where double-valued 
amplitude responses are possible. For the case of the harmonium reed, the 
maximum detectable shift was about one cycle per second, or Af/fo < 0.01. 

Additional information provided by this theory helps to explain, in part, the 
Source of asymmetry in the damping function. Asymmetric behaviour of the reeds 
was observed ( 3  4), and its extent (as an effect of flow-field disturbances) in this 
aspect of the structure's behaviour can be estimated by retaining the second- 
order contributions to the damping function. 

It is interesting to note that these extensions as applied to the case of the 
harmonium reed are a by-product of the foregoing analysis and that, therefore, 
no complications due to the analysis of additional terms in (6) would be 
necessary. 
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5.3. Relevance of acoustic radiation 

The radiation of sound from a self-excited structure is a phenomenon which is 
interesting from many points of view. The musician, for example, is interested in 
the sound radiated from reeds because it is an essential datum for the design of 
a musical system. The noise-control expert in industry, on the other hand, is 
interested in the sound radiation as a means of assessing the annoyance that 
flow-induced structural vibrations can cause. 

Now that the harmonium-reed source has been described from both a monopole 
point of view (fluctuating flow) and a dipole point of view (fluctuating forces a t  
the reed surface), it would seem that the next step naturally would be to attempt 
analytically to construct the acoustic signal that emanates from this source. 
(Such an analysis would, of course, have to include effects of environmental 
influences that would modify the signal, such as baffles and the room charac- 
teristics.) It has already been demonstrated in the laboratory, though not 
analytically proved, that the amplitudes of the acoustical and dynamical signals 
of the reed grow in a similar manner (St Hilaire 1970). This would seem to indicate 
that the fraction of energy that is dissipated for the purpose of producing sound 
is either constant or very nearly so, as the signal grows. 

Once a quasi-steady analysis of the acoustic field were realized, then by making 
use of the experimental evidence that the dynamical and acoustical signals for 
reeds are characteristically similar, a time-dependent development of the 
acoustic disturbance would be established empirically. The knowledge gained 
from such a study could have long-range use with respect to other flow-structure 
interaction systems that are capable of' radiating a perceptible signal. 

An applied mechanician could find the data on the sound radiation interesting 
from another point of view, for it could in turn lead to diagnostic clues about the 
emitting mechanism itself. This was indeed the case for the investigation that led 
to  this paper. The successful outcome of this paper demonstrates the promise 
of acoustics as a diagnostic tool for investigating complicated sound-radiating 
flow systems. 

The clue which gave rise to the analytical approach outlined in this paper came 
about when it was noted that a reed vibrating in simple harmonic motion could 
radiate a multi-harmonic acoustic signal. By making use of the implied multi- 
harmonic content of the flow-field disturbance, it was possible to describe the 
acoustic source fluid dynamically in some detail. 

The use of an acoustic signal as a diagnostic tool to help identify certain 
characteristics of complicated sound sources associated with flow-structure 
interactions is under current investigation. 

6. Conclusions 
Upon neglecting nonlinear energy-dissipating forces which arise from sources 

such as material damping and large amplitude aerodynamic drag, it was found 
that the mechanism responsible for inhibiting the indefinite growth of the 
harmonium reed's amplitude of vibration may be attributed to the existence of 
the higher-order unsteady flow perturbations which are induced by the reed 
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motion itself. More specifically, the mechanism responsible for the nonlinear 
energy drain from the reed motion was found to be a result of the mutual inter- 
action of the first-harmonic component with the steady-state and second- 
harmonic components of the flow disturbance. This mutual interaction results 
in nonlinear forces which act on the reed so as to slow down the rate of amplitude 
growth until a stable situation arises; that is, until a limiting amplitude is reached 
by the reed. I n  addition, it was established that both the unsteady and convective 
acceleration terms of the unsteady Bernoulli equation contribute significantly to 
the nonlinear force that acts on the structure. 

The relative simplicity of this theory makes it a desirable tool for analysing 
other systems in flow-structure interactions research which appear to have 
a questionable source of nonlinear dissipation. The advantage of this type of 
analysis lies in the fact that the flow about the oscillating structure may be 
assumed to be potential if certain conditions about the flow are satisfied. Once 
an appropriate flow field has been determined and account of the unsteady 
higher-order effects has been made, the analysis should proceed in much the same 
way as in the special case of the harmonium reed. Although such an analysis 
might not explain the mechanism of excitation as it did for the case of reeds 
found in musical instruments (SWB), the subsequent results arising from the 
nonlinear aspects of the analysis should, nevertheless, be applicable for deter- 
mining a t  least one of several possible sources of nonlinear energy dissipation for 
large amplitude motion, regardless of the mechanism of excitation. 
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